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The methods of ‘histograms and cumulants’ have been applied to extract temperature dependent
information from dynamic simulations of polyethylene.The use of these methods allowsone to efficiently
predict the coefficientsof thermal expansion,and for the latter method, evento determinetheir temperature
dependencefrom relativelyshort simulations.Usingstandard forcefieldsand a run of only47ops, the latter
method matchesthe coefficientsof thermal expansionto 60/0for the a unit celldimension,2°/0 for b and 500/o
for the quite small, negative, coefficientin the c-dimension.~ 1997ElsevierScienceLtd.
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Introduction
One of the primary uses of molecular modelling is

in the determination of the geometries of molecular
systems. Force field calculations have been shown to
reproduce the unit cell of many crystals. The effect of
temperature on the geometries should, in principle, also
be readily calculated. Unfortunately, to calculate these
changes often takes considerable computational resources.
In this note, we discuss methods of calculating the
coefficients of thermal expansion (CTES) for the poly-
ethylene unit cell. The fluctuations of the periodic box
will be used in the histogram and cumulant methods to
illustrate the determination of CTES for polyethylene
(PE).

One of the interesting characteristics common to many
extended chain polymers is the contraction with increas-
ing temperature of the chain axis, aligned along the fibre
axis in oriented fibres. This negative CTE is of technical
importance in composite parts experiencing large tem-
perature variationsl,z. For PE, the CTES are –0.9 x
10-5 K-], 16 x 10-5 K-l, and 6.3 x 10-5 K-l along the
c, a and b-axes, respectively, over a temperature range of
100–300 K3-5. Calculation of the CTES is a challenge due
to the precision needed. In the present work, the com-
putational time was kept short to increase this challenge.

Previous molecular dynamics simulations have shown
that the increasing contraction of the c axis with increas-
ing temperature is due to ‘out of plane’ bending modes
(perpendicular to the chain axis). This was initially
demonstrated by stimulating single chains surrounded
by a cell of chains fixed at positions corresponding to
experimentally observed values for the temperature of
interest. In the present simulations, chains are modelled
in a periodic cell. By applying periodic boundary con-
ditions: (1) all atoms are allowed to move improving the
measured statistics, (2) longer range forces can more
reasonably be modelled, and most importantly, (3) the
dimensions of the cell can be determined as observable
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from the simulation (thus removing externally fixed para-
meters which were present in the previous simulations).

Computation
In the simulations, eight PE chains each ten ethylene

units in length were placed in a periodic cell (comprising
four unit cells in the a–b projection). The dimensions
of the cell were allowed to change throughout the
simulation by using the Anderson–Parinello–Rahman
HamiltonianT8. The ‘piston’ mass parameter was set to
be 1/10 of the system mass. A constant thermodynamic
temperature was maintained using a Nose–Hoover9’10
method as implemented in Polygraf 11.A time step of 1fs
was used along with the Dreiding-11forcefield12. A 400-ps
run was done to reach equilibrium at 200 K. Thereafter
data were collected for a further 242ps with data sampled
every 20 fs. Runs were also done at 205 K and 225 K for
times of 153ps and 75 ps, respectively. The time average
dimensions of the unit cell in these simulations are shown
in Table 1. The uncertainties are those associated with
the dimensional averages over periods of time between
uncorrelated data points.

The row labelled static is of a minimized structure of
the super cell. It should be ”noted here that the force field
has been parameterized to give ‘correct’ geometries when
minimized. Of secondary importance in the force field
developments is the prediction of vibrational frequencies.
As an over generalization it can be said the centres of the
potential wells in the force field specify the geometry,
while the force constants and functional form of these
wells determine the vibrational frequencies. In this mol-
ecular dynamics study, we are examining the CTE which
is more sensitive to the latter and are not concerned with
the fact that the centres of the potential well are fitted to
time-averaged data.

Analysis
The simplest method of calculating the CTES is to

determine the average dimensions of the unit cell at
different temperatures. The results of this calculation are
shown in Table 2. The main conclusion is that there is not
enough precision to permit determination of the CTES.
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Table 1 Calculated periodic supercell dimensions (in angstroms)

Temp. a Axis b Axis c Axis

200K 7.4443 + 0.0005 4.8581+ 0.0003 2.65414+ 0.00001
205 K 7.48 + 0.03 4.85924 + 0.00005 2.65392 + 0.00003

225 K 7.49 + 0.02 4.8594+ 0.0004 2.65391+ 0.00003
Static” 7.3215 4.8592 2.6514

Experimental 296K 7.217 4.901 2.546

“ A minimized state, no motion

Table 2 Calculated CTES from multi~le simulations at different temperatures (in 1O-sK-l)

Temperature range a Axis b Axis c Axis Time” (ps)

200-205 K 96+ 80 5+1 –1.7 + 0.2 395

200-225 K 25+ 10 1.1 + 0.4 –0.35 * 0.05 317

205–225 K 7k7 0.2 + 0.4 –0.02 + 0.08 228

Average 43+ 32 2.1 + 0.6 –0.68 * 0.11 470

a The time shown comprises the total time for the two simulations at the temperatures given in column 1

The reason is that the fluctuations of the unit cell due to
the usual temperature induced vibrations are much larger
than the small changes in the time average. The uncer-
tainties in the numbers mask changes due to increasing
temperature. Since the values of the experimental CTES
do not change greatly with temperature in the range
used, the averages of the calculated values of the CTE’S
for the different temperatures were also considered314.
These too are unsatisfactory. Larger systems and simu-
lations of sufficient length in time to sample phase space
adequately are needed to bring the numbers into agree-
ment with experimental values.

Histogram method
One weakness with the method above is that it examines

only a small fraction of the data (time average values of
the unit cell) collected in a dynamics simulation. Fluctu-
ations in energy have been used to determine heat capa-
city of systems. It is well known that, in principle, the
temperature dependence of a property can be extracted

13 However, infrom simulations at a single temperature .
the conventional analysis of a simulation the information
contained in such fluctuations is often discarded. In the

14the energy distribution (whichmethod of histograms
a first approximation is a Gaussian that becomes a delta-
function in the thermodynamic limit) is modelled through
a population histogram H(Ui) (the number of sampled
states out of a total IVl measured states that have an
energy Ui + AU/2) is determined. The density of states
W’(Ui) at energy Ui can then be directly calculated. A
correlation of the length [or more generically any prop-
erty A( Ui)] dependent on the energy of the system can
also be determined. Notice that both the density of states
and A( Ui) are independent of temperature and can be
calculated from a simulation at a single temperature. The
temperature dependence of A[A(T)] can be calculated
from these two functions via

x4(T) = X A(’Vi)H(Ui) e(-66)“ (1)

Here ti,fl is the change in inverse temperature (1/kT)
between the simulation and temperature of interest.

An example of H(Ui) calculated from the 200K
simulation and expressed as a percentage after normal-
ization is shown in Figure 1. Also shown are shifted

-150 -1oo -50 0 50 100

Energy(KCal/mol)

Figure 1 Three population histograms, for the temperatures 195K
(solid line), 200K (dotted line) and 205 K (dashed line), are shown. The
200K histogram is from the original data, the other two are calculated
as discussed in the text

Table 3 Calculated CTES from single simulations using the histogram
method” (in 10-5 K-l)

Simulation
temperature a Axis b Axis c Axis Time (ps)

200K 10.1 9.3 –0.065 242
205K 21.2 2.6 –1.5 153
225 K 14.7 7.4 –0.26 75
Average 15.3 6.4 –0.6 470

“ Calculated with a temperature range, AT, of 0.2K

histograms, H(Ui) e-(6fl)u1 for two other temperatures.
There is significant noise in the wings of the curves due to
poor sampling which limits the applicability of this
method to a small temperature range. This noise leads to
the spikes and other irregularities in the shifted curves.
Nevertheless, in this small range, the nine expansion
coefficients calculated (Table 3) are, for the most part, in
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better agreement with the experimental values than those
based on average dimensions (Table 2).

The values of CTE converge much more rapidly in a
given simulation making it possible to do multiple simu-
lations from different starting configurations rather than
one long run. In this context, note that the averages of
the three simulations are in better general agreement with
experiment than the averages given in Table 2.

Cumulant method
The main weakness in the histogram method can be

seen in the wings of the histogram shown in Figure 1. In
the equation above, the wings are treated as having the
same accuracy as the peak of the curve even though there
is much more noise in the values due to under sampling.
The cumulant method has been introduced to overcome
many of these obstacles when the system under study is
not near a transitions. The central idea is to model the
distribution function using a cumulant expansion instead
of a histogram. (Another type of expansion also has been
proposedlb.) This is justified by the fact that in a single
phase region the distribution function is often nearly
Gaussian and can be described by only the few lowest-
order cumulants. The CTE for a side of length A can be
determined using generalized cumulants17 from

AA = (A)fl - (A)fl, = ~ ‘-6;/”-’ ((6U) ”C$A)C(2)
n=o

Table 4 Calculated CTES from single simulations using the second
order cumulant (in 10-5K–’)

Simulation
temperature a Axis b Axis c Axis Time (PS)

200K 10+ 1 9.1 h 1 –0.04+ 0.4 242
205K 21 + 2 2.5 & 1 –1.0 + 0.4 153
225 K 14* 2 7.5 * 2 –0.28 + 0.4 75
Average 15 6.4 –0.44 470
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Figure 2 The change in the c dimension of the polyethylene periodic
cell (solid line) plotted as a function temperature using three terms in
the cumulant expansion of the 200 K simulation. The CTE (dotted line)
is also calculated and plotted against the right axis. The dashed line
indicates a value of zero for the CTE

‘] ‘-6P)”-’((6i7)”c$A)C
CTE = (;) ~ T2(n - 1)!

(3)

where ((6U )n6A )Care generalized cumulants of energy
and the length A. Keeping only one term in the expan-
sion coefficient given in equation (3) is equivalent to
calculating the CTE from fluctuations as presented by
Allen and Tildesley ’8. Using this equation, yielded the
CTE values shown in Table 4. Here the CTE is calculated
at the simulation temperature with 6,6= O, and there-
fore, only one term is used in the expansion. The uncer-
tainty shown in the table is calculated from the second
cumulant.

The length A (and the CTE) are smooth functions of
l/T in the cumulant approach and are thus free of many
of the unphysical results that can be introduced by a
discrete histogram. A plot of the predicted change in the
c-axis as well as the CTE is shown in Figure 2. Using the
cumulant method in the above three simulations we have
been able to keep three terms for the cumulant expansion
in equation (2). The first is simply the time average of
A((xI )). The second is directly related to the CTE at the
simulation temperature. The third term is a measure of
the change in CTE as a function of temperature.

Examining the equation for CTE we see that there is a
built in temperature dependence even when keeping only
one term in the expansion. The sign of this dependence is,
however, the opposite of that expected. In experiments
with polyethylene, it has been observed that as tempera-
ture increases the CTES of the a and to a lesser extent of
the b axes of a well crystallized sample tend to become
more positive while that for the c axis tends to become
more negative34. By including a third term, ((~U)2~A).
in the expansion given in equation (2) [the second term in
equation (3)], the temperature dependence of CTE can be
modelled better.

For example, over a temperature range of 200–225 K
the experimental values for the CTE of the a, b and c axis
changes by 1.2, 0.12 and –0.2, respectively (in units of
10-5 K-l). Using only one term in equation (2) yields
predicted changes in the CTES of –4.4, –0.5 and 0.3
from the 225 K run and –3.6, –1.4 and 0.01 from the
200K run. As noted above, these values have the oppo-
site sign to that seen experimentally. Including the third
cumulant in equation (2) [the second term in equation
(3)] yields more reasonable values of 0.49,0.54 and –1.1
from the 225 K run and 1.20, 0.23 and –0.25 from the
longer 200 K run. These have the correct signs and more
nearly the correct magnitudes.

As the temperature goes to zero, the CTE is expected
also to tend to zero. Figure 2 shows the CTE (dotted line)
to become zero at a much higher temperature. Keeping
only three terms in equation (2) [two in equation (3)]
biases the location of the zero point to be close to the
simulation temperature.

Conclusion
With the use of cumulants, we are able to extract the

temperature dependence of a solid state system by exam-
ining the fluctuations of the system. ‘Brute force” methods
of determining the CTE from multiple temperature runs
are not able to determine the values as well and are not
able to distinguish even the sign of the change of the CTE
with temperature for the axes of PE with dynamics runs
of the same time length. The use of cumulants can, on the
other hand, determine not only more accurate values of
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CTES but also the temperature dependence, often with
less computational effort and shorter simulations. The
ability to use shorter simulations allows one to use mul-
tiple runs which may sample more of phase space than a
very long, single run.
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